Promoting the Production and Use of Sustainable Palm Oil

Dr. Ir. Arina Schrier, WI
For the PLWG, RSPO
Impacts of oil palm production on peat

Promoting the Production and Use of Sustainable Palm Oil

Dr. Ir. Arina Schrier, WI
For the PLWG, RSPO
Objectives Peatland Working Group

- Objective RSPO: promote sustainable oil palm products
- The Peat Land Working Group (PLWG) is part of the RSPO and functions as a work stream of its 2nd Working Group on Green House Gases.

 - Objective 1 PLWG: Scientific review on the influence of oil palm plantation development on peat and recommendations for reducing greenhouse gas emissions
 - Objective 3 PLWG: Study possibilities of verifying carbon pools and greenhouse gas emissions in peatlands
Outline

- History and land use change
- Impacts of drainage and deforestation (carbon losses, greenhouse gas emissions, fires, soil subsidence)
- Monitoring
- Recommendations on sustainable production
- Conclusions
Tropical peat swamp forest

- Ecosystem with a high biodiversity
- Important carbon store
Transect peat bog

A peat bog is rain water fed

Peat swamp forest

Organic matter + 90% water
Deforestation: facts

<table>
<thead>
<tr>
<th>Area</th>
<th>Period</th>
<th>Reference</th>
<th>Peat Swamp conversion to other LU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insular SE Asia</td>
<td>2000-2005</td>
<td>WI Malaysia 2010</td>
<td>1.47</td>
</tr>
<tr>
<td>Sarawak</td>
<td>2005-2007</td>
<td>SarVision 2011</td>
<td>7.1</td>
</tr>
<tr>
<td>Sarawak</td>
<td>2009-2010</td>
<td>SarVision 2011</td>
<td>8.9</td>
</tr>
<tr>
<td>Malaysia & Indonesia</td>
<td>2000-2010</td>
<td>Miettinen et al 2011</td>
<td>2.2</td>
</tr>
<tr>
<td>Borneo</td>
<td>1997-2002</td>
<td>Fuller et al 2004</td>
<td>2</td>
</tr>
<tr>
<td>Indonesia</td>
<td>1990-2000</td>
<td>Hansen et al 2009</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Sources:
- Miettinen et al. 2011
- Hansen et al. 2009
- Fuller et al. 2004
- SarVision 2011
- WI Malaysia 2010
• **Malaysia** (Peninsular Malaysia, Sabah and Sarawak):
 – 0.6 - 0.67 million ha is on peat (Posa *et al.*, 2011; Agus *et al.*, 2011)

• **Indonesia**:
 – 1.3 million ha on peat, 1.0 million ha in Sumatra and 0.3 million ha in Kalimantan (Page *et al.*, 2011; Agus *et al.*, 2011). Concessions until 2020: 2.5 million ha on peat.

• Global demand food and biofuels is likely to put further pressure on peat swamp forests (Rijenders and Huijbregts, 2008; Fargioni *et al.*, 2008).
Drainage for production

Natural situation:
- Water table close to surface
- Peat accumulation from vegetation over thousands of years

Drainage:
- Water tables lowered
- Peat surface subsidence and CO₂ emission starts

Continued drainage:
- Decomposition of dry peat: CO₂ emission
- High fire risk in dry peat: CO₂ emission
- Peat surface subsidence due to decomposition and shrinkage

End stage:
- Most peat carbon above drainage limit released to the atmosphere within decades,
 unless conservation / mitigation measures are taken

Page et al., 2011
1. Initial rate 20-60 cm per year, mainly compaction
2. Subsidence rate 4.6 cm per year, shrinkage/compaction + oxidation
3. Final rate 2-5 cm per year, mainly oxidation: 92% of cumulative subsidence was caused by peat oxidation

(e.g. Hooijer et al., 2011; Wosten et al., 1997; Couwenberg et al., 2010; Mohammed et al, 2009)
Risks of Soil Subsidence

- Salt water intrusion
 - Impact on fisheries (Cruz et al., 2007; Loukos et al., 2003)
 - Impacts on biodiversity (Cruz et al., 2007)
 - Impacts on coastal agriculture (Silvius et al., 2000).
Loss of Carbon

- Natural swamp forest into plantation: release of C above ground: 153 – 359 t C ha\(^{-1}\)

- Logged forest to plantation release of C above ground: 47 – 214 t C ha\(^{-1}\).

- Drainage: ongoing release of C: 7-40 t C ha\(^{-1}\) yr\(^{-1}\).
9.1 t CO$_2$ ha$^{-1}$ yr$^{-1}$ per each 10 cm drainage depth (Couwenberg et al., 2010); range 26-178 t CO$_2$ ha$^{-1}$ yr$^{-1}$ (Agus et al., 2009; Lamade and Bouillet, 2005; Hooijer et al., 2011).

86 t CO$_2$-eq ha$^{-1}$ yr$^{-1}$ for drainage depths of 60 – 85 cm (Page et al. 2011; Hooijer et al., 2011).

With higher water tables (40-60 cm as is advised in the BMP) this emission will be lower.
Water management

- BMP: maintaining water levels in the field drains at 40-60 cm, however, if palms are young, even water levels of 35-45 cm are sufficient to obtain high yields

MPOB Research Station in Sessang, Sarawak (Source: Mohammed et al., 2009).
Greenhouse gas emissions

CH4:
- Land: ~ 0 emissions
- Waste- and open water fluxes: about 0.8 – 1.2 t CO$_2$-eq ha$^{-1}$ yr$^{-1}$ from palm oil mill effluents and possibly up to 8 t CO$_2$ ha$^{-1}$ yr$^{-1}$ for fluxes open water.

N2O:
- 0.56 t CO$_2$-eq ha$^{-1}$ yr$^{-1}$ (Melling et al., 2007)
- 4.1 t CO$_2$-eq ha$^{-1}$ yr$^{-1}$ (IPCC default value for tropical histosols)
Greenhouse gas and Carbon measurements

- Chamber (direct measurements: low temporal coverage, high spatial coverage)
- Eddy Covariance (direct: high temporal coverage, low spatial coverage)
- Proxies (indirect measurements: soil subsidence, water table, temperature)
Chamber measurements

- Use short (4-5 minutes) closure times
- Use regression if possible, not integration for temporal upscaling
- Take into account the components that differ in emissions
- Distinguish between auto- and heterotrophic respiration
Monitoring

- System boundaries
- Stratify/determine sources and sinks
- Estimate emissions within the strata by e.g. measuring soil subsidence
- Determine emission reductions and/or carbon gains by estimating or measuring changes over time

8 years subsidence in Woodman plantation, Sarawak
Fires

- Primary undisturbed rainforests usually do not burn.

- The increased fire frequency due to drainage of peat results in the release of high amounts of CO_2 and CH_4.

- Average of 261 t C ha$^{-1}$ yr$^{-1}$ for the years 1997, 2001 and 2002 was released.

- Fires affect the climate worldwide and affect social life, economy and human health (respiratory illnesses).
Human disturbance

CO₂

- Russia: 60 Mt
- EU: 174 Mt
- USA: 72 Mt
- Central Asia: 115 Mt

• Deforestation
• Drainage
• Fires
Recommendations for sustainable palm oil production

New plantation land:
- Development on mineral soil and non-peat/low carbon degraded land
 - Emission reduction 70-80%

Existing plantations on peat:
- Introduction of BMP:
 - Good water management (= key factor!)
 - Drainage depth av. Max 50 cm (40-60 cm) in field drain
 - Emission reduction > 40%
 - Fire prevention and fire control, zero burning
 - Compaction, vegetation cover on bare soil
 - Recycling of wastes and pulvarizing old palms

- Consider cut-off point for peat rehabilitation,
 - Considering GHG, subsidence and flooding

MPOB, Mohammed et al., 2009
Conclusion

- Large subsidence following drainage -> future risk of flooding (-> high costs for flooding defense!)
- Large emissions from oil palm on peat because of drainage
- Water level is the main factor to reduce emissions. BMP: 40-60 cm in field drains.
- Avoidance of development on plantations on peat because not sustainable
- For RSPO: Consider ‘cut-off point’ for existing plantations on peat