

Promoting the Production and Use of Sustainable Palm Oil

Dr. Ir. Arina Schrier, WI For the PLWG, RSPO

RSPO Certified Transforming the market. Together.

Promoting the Production and Use of Sustainable Palm Oil

Impacts of oil palm production

on peat

Dr. Ir. Arina Schrier, WI For the PLWG, RSPO

Objectives Peatland Working Group

- Objective RSPO: promote sustainable oil palm products
- The Peat Land Working Group (PLWG) is part of the RSPO and functions as a work stream of its 2nd Working Group on Green House Gases.
 - Objective 1 PLWG: Scientific review on the influence of oil palm plantation development on peat and recommendations for reducing greenhouse gas emissions
 - Objective 3 PLWG: Study possibilities of verifying carbon pools and greenhouse gas emissions in peatlands

Outline

- History and land use change
- Impacts of drainage and deforestation (carbon losses, greenhouse gas emissions, fires, soil subsidence)
- Monitoring
- Recommendations on sustainable production
 Conlusions

Tropical peat swamp forest

Ecosystem with a high biodiversity

Important carbon store

Transect peat bog

A peat bog is rain water fed

Deforestation: facts

Area	Period	Reference	Peat Swamp conversion to other LU
			Av. Annual %
Insular SE Asia	2000-2005	WI Malaysia 2010	1.47
Sarawak	2005-2007	SarVision 2011	7.1
Sarawak	2009-2010	SarVision 2011	8.9
Malaysia & Indonesia	2000-2010	Miettinen <i>et al</i> 2011	2.2
Borneo	1997-2002	Fuller <i>et al</i> 2004	2
Indonesia	1990-2000	Hansen <i>et al</i> 2009	1.5

Oil palm: facts

Malaysia (Peninsular Malaysia, Sabah and Sarawak):
 – 0.6 - 0.67 million ha is on peat (Posa *et al.*, 2011; Agus et al., 2011)

Indonesia:

 1.3 million ha on peat, 1.0 million ha in Sumatra and 0.3 million ha in Kalimantan (Page *et al.*, 2011; Agus et al., 2011). Concessions until 2020: 2.5 million ha on peat.

 Global demand food and biofuels is likely to put further pressure on peat swamp forests (Rijenders and Huijbregts, 2008; Fargioni *et al.*, 2008).

Drainage for production

Natural situation:

- · Water table close to surface
- Peat accumulation from vegetation over thousands of years

Drainage:

- Water tables lowered
- Peat surface subsidence and CO₂ emission starts

Continued drainage:

- Decomposition of dry peat: CO₂ emission
- High fire risk in dry peat: CO₂ emission
- Peat surface subsidence due to decomposition and shrinkage

End stage:

- Most peat carbon above drainage limit released to the atmosphere within decades,
- unless conservation / mitigation measures are taken

Soil Subsidence

- 1. Initial rate 20-60 cm per year, mainly compaction
- 2. Subsidence rate 4.6 cm per year, shrinkage/compaction + oxidation
- 3. Final rate 2-5 cm per year, mainly oxidation: 92% of cumulative subsidence was caused by peat oxidation

(e.g. Hooijer et al., 2011; Wosten et al., 1997; Couwenberg et al., 2010; Mohammed et al, 2009)

Risks of Soil Subsidence

Loss of Carbon

- Natural swamp forest into plantation: release of C above ground:153 – 359 t C ha⁻¹
- Logged forest to plantation release of C above ground: 47 – 214 t C ha⁻¹.
- Drainage: ongoing release of C: 7-40 t C ha⁻¹ yr⁻¹).

Peat drainage -> CO2

>9,1 t CO₂ ha⁻¹ yr⁻¹ per each 10 cm drainage depth (Couwenberg et al., 2010); range 26- 178 t CO₂ ha⁻¹ yr⁻¹ (Agus *et al.*, 2009; Lamade and Bouillet, 2005; Hooijer *et al.*, 2011).

>86 t CO_2 -eq ha⁻¹ yr⁻¹ for drainage depths of 60 – 85 cm (Page *et al* 2011; Hooijer et al., 2011).

With higher water tables (40-60 cm as is advised in the BMP) this emission will be lower.

Water management

BMP: maintaining water levels in the field drains at 40-60 cm, however, if palms are young, even water levels of 35-45 cm are sufficient to obtain high yields

Greenhouse gas emissions

- Land: ~ 0 emissions
- Waste- and open water fluxes: about 0.8 1.2 t CO₂-eq ha⁻¹ yr⁻¹ from palm oil mill effluents and possibly up to 8 t CO₂ ha⁻¹ yr⁻¹ for fluxes open water.

Greenhouse gas and Carbon measurements

- Chamber (direct measurements: low temporal coverage, high spatial coverage)
- Eddy Covariance (direct: high temporal coverage, low spatial coverage)
- Proxies (indirect measurements: soil subsidence, water table, temperature)

Chamber measurements

- Use short (4-5 minutes) closure times
- Use regression if possible, not integration for temporal upscaling
- Take into account the components that differ in emissions
- Distinguish between auto- and heterotrophic respiration

Monitoring

- System boundaries
- Stratify/determine sources and sinks
 - Estimate emissions within the strata by e.g. measuring soil subsidence
- Determine emission reductions and/or carbon gains by estimating or measuring changes over time

8 years subsidence in Woodman plantation, Sarawak

Fires

- Primary undisturbed rainforests usually do not burn.
- The increased fire frequency due to drainage of peat results in the release of high amounts of CO₂ and CH₄
- Average of 261 t C ha⁻¹ yr⁻¹ for the years 1997, 2001 and 2002 was released.
- Fires affect the climate worldwide and affect social life, economy and human health (respiratory illnesses).

Recommendations for sustainable palm oil production

New plantation land:

Development on mineral soil and non-peat/low carbon degraded land

emission reduction 70-80%

Existing plantations on peat:

Introduction of BMP:

- Good water management (= key factor!)
 - drainage depth av. Max 50 cm (40-60 cm) in field drain
 - emission reduction > 40%
- Fire prevention and fire control, zero burning
- Compaction, vegetation cover on bare soil
- Recycling of wastes and pulvarizing old palms

Consider cut-off point for peat rehabilitation,

Considering GHG, subsidence and flooding

Conclusion

- Large subsidence following drainage -> future risk of flooding (-> high costs for flooding defense!)
- Large emissions from oil palm on peat because of drainage

•

- Water level is the main factor to reduce emissions BMP: 40-60 cm in field drains.
- Avoidance of development op plantations on peat because not sustainable
- For RSPO: Consider 'cut-off point' for existing plantations on peat